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-Generalized Theory of Electrode Kinetics at Cohstant Potential
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The theory of irreversible electrode reactions at constant potential
treats reactions under simultaneous control by charge-transfer and mass-transfer
polarization.(1-5) It predicts the current-time curve following an abrupt change
in electrode potential from the reversible potential to a new value which is main-
tsinsc by use of a potentiostat. The-treatment assumes that mass transfer occurs
by c¢iffusion only; experimentally this condition is closely approached by use of
short electrolysis time, of unstirred solutions to minimize convection, and of
large excess of supporting electrolyte in the solution to minimize migratian of
reacting ions in the applied field. Electrodes of planar geometry have been of
greatest interest, (1-4) although cylindrical and spinerical electrodes have also
been treated.(4,5)

All of the previous theory has been limited to first-order charge-transfer
mechanisms with the further restriction that the electrical work involved in the re-
action occur only during the rate-determining step. The purpose of this paper is to
extend the theory to higher-order mechanisms, with removal of the restriction on the
electrical work involved. The treatment is for conditions of planar electrode
geometry, mass transfer only by semi-infinite linear diffusion, and excess support-
ing electrolyte, Approximate solutions valid for small concentration changes are
derived in closed form.

The general electrode reaction is formulated conventlonally (6,7) as
' bz-n ’
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The important reaction steps in the anodic direction are
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where P and Q are intefmediate,states defining the rate-determining step, and v is
the stoichiometric number. The total number of electrons (n/V) involved in the de-
composition of one mole . of the anodic activated complex ( A_) is placed. in braces to
indicate that the number of electrons used up in forming thé intermediates P, *A or
( is not fixed. Electrical work done during formation of P from the cathodic re-
actants will be represented by p, and that dorie in formation of 'Q from the anodic
reactants by q. The net anodic reaction rate at potential € (overpotential f
positive) is expressed as current density by (8) :

(1-)(p_-p) + Blq_-q)
i= io(tfr/;f).exp[ ‘r T L ].
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‘Here i_ is the exchange current density, f the act1v1ty.coefficient of the acti-
vated gomplex, f the transfer coefficient and € = F/RT. The activity of a reactant, (
e.g. B, is designated a, in the solution at the electrode surface and aQ in the bulk,
Quantities #f, p and g refer to the reaction at the applled potential € and may be
time dependent, while the same guantities with subscript r refer to the reaction at
the reversible electrode potential 6 At the rﬂvcrslble potential the exchange 3
current den51ty is given by
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where i is the exchange current density at the standard electrode;(7) quantities

p, and 8;53150 refer to the standard electrode. Equations (2) and (3) have general )
applicabIlity with one limitation, namely that the activated complex YA must contain
the reactants B and X in the ratio b/x, but this limitation is easily eliminated when
desired without introduction of any new principle.(6,7)

It is evident from Eq. (3) that the reaction order, as conventionally
determined from»ioxis not a simple quantity.(7) Thus for substance B: '
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“DAs a general rule, therefore, complex electrode reactions may mot be described as
being of first order, second order, etc.,, in the usual manner of chemical kinetics. ’
It is expedient for the theory of combined charge- and mass-transfer polarization
to describe the reaction by a pseudoorder, which we define here as simply the expo-
nent of the activity ratio in the general rate equation (Eq. 2). Thus the pseudo-~
order of the reaction is'y/v with respect to Y, w/v with respect to W, etc., if each "
of the reacting substances undergoes.changes in concentration during the reaction.
If one of the substances involved, e.g. W, exhibits minute fractional changes in con-
centration during the entire reaction period, the term (ay/a%)w v becomes unity in (
Eg. 2 and then the reaction becomes effectively zero pseudoorder in W, :

For simplicity we will formulate the electrolyte to contain one of the
cathodic reactants, X, and one of the anodic reactants, W, in sufficiently high con-
centration that the ratios a /a° and a,/a® remain essentially unity. In addition,
wewill consider only short r8ac¥ion times such that all concentration changes at the
electrode surface remain small. From the latter copdition plus‘the use of excess
supporting electrolyte, it may be assumed that f 71 is replaceable by unity and «
that concentration ratios may be substituted for fhe corresponding activity ratlos
with n991191ble effect., Then Eq. 2 converts to

3

p[(l-ﬁ)(pr-p‘) + ﬁ(qr-Q)}

i=1iex RT
~C Y/" b/v . ‘
{97 epi-pifen - (;%) exp(-pjen)} (2
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I+ would be de51rab1e to obtaln analytical solutions of the diffusion
problem for a current of the form given in Eq. 5 but one cannot apply the method of
Laplace transforms. An alternative approach is to obtain an approximate solution
by linearizing Eq. 5 with respect to concentrations, so that the Laplace transform




N e~

-

107

method may be utilized. The latter approach- will be developed in this paber.v For

the sake of brevity we restrict our discussion to cases for which the. electrical
work occurs only in the rate-determining step, so that p. = p =q =qg=0, (In
general, provided only .that p and g are continuous functions of the concentrations,
EG. 5 can always be linearized with respect to concentrations. The form of the
approximate solution does not change; however, the coeff1c1ents involved become
somewhat more complicated.)

It is convenient to introduce the fractlonal changes in concentratlon at
the electrode surface:

Uy = (cy - cs)/cs ug = (cB - ég)/cg (6)

Then, for small concentration changes,

ORI G >b/“='l By
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and, in the present case (p=g=0),.Eq. 5 becomes

. i= 1(t—0 -+-UuY _UéuB . 1)
with | |
. i(t@:=i[ﬂﬂl$) ﬂ-em(g1qﬂ B (@
i Je o b(a W(l-ﬂ NVA] [( VOV)W]WV
and
Ug = %ioexp('?sﬂq) 3 Uy = L Jexp(l 3)5‘“ )

The diffusion problem: We consider the. semi-infinite linear diffusion of two
species, B and Y, with concentrations-cB(x,t), cY(x,t) coupled together at the
electrode surface x=0 by a general currént-concentration relationship like that
of £q. 5. '

i(t) = flcglo,t), cylo,t)) - ; (10)
The diffusion equations for g and Cy are

2 2

D % _ i ; D e’ = ?El - (11)
B .2 ot ’ Y. 2 ~ 9 ) :
0x . 0x
where D “and D,, are the diffusion coefflclents of substances B and Y. The initial
conditions are cg = cg and cY = cg at t=0 for all x. The boundary conditions are
. o o i ) )
(1) cg = cg and cy > ¢y as x> for all t - (12)
dc dc
R _ nE Y _nE _B _
(@) 1) = B0y o= g BglE ) o = fleg(o,t),cy(o,t)] (13)

Wnen the current, i(t), contains non-linear terms in the concentrations
the complete solution to the problem of Eq. 11- -13 cannot be obtained by standard
analytic techniques. However, a useful relationship, valid for any functional
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depencence of . i(t) upon the concentrations, can be found by applying the Laplace
transform technique to kq. 11-13 as they stand.

-To obtain this relationship we require only that i(t) be some arbitrary
(and, indeed, at this point unknown) function of the time whose Laplace transform
exists. Then a straightforward application of the Laplace transform technique
yields the relation ] |

: o I .

cB(x:O,t) - g b /D_Y (1)
o~ D.

cY(x=O,t) - ¢y Y B :

The principal utility of Eq. 14 is that it permits the diffusion problem
to be solved in terms of just one of the components B and Y. In the actual expres-
sion for the current in terms of concentrations at.the electrode surface (see Eq.
10), we eliminate c,(x=0,t) by using Eq. 14 and are left with a diffusion problem
for component Y in which component B plays no part whatsoever.

However, although Eq. 14 simplifies the diffusion problem to one involving
the diffusion of only one component (Y, say), it does not remove the generally non-
linear dependence of current on concentration, and recourse must be had either to
numerical solutions or to an approximate solution based on the linearized form of
Eg, 7.

In this linearized form, and with component B eliminated via Eq. 14, the
diffusion problem is expressed in temms of the fractional change in concentration
u (x,t (Eq. 6) as

8%u, du :
Y_ .Y
By 52 - Bt (15)
X
with . )
UY(x,tzo) =0 , UY(x “+ o, t) =0 (16)
and the conditions on the current: -
_ g .0 Y
i) = y F Y DY(ax )x:O
(17)
D
. b Y v Y> ]
i(t) 1(1=0) +uy x=O,t)[UY +< B
The solution of Eq. 15-17 is found by Laplace transform techniques to be
.. 2
i= 1(t:0)exp(K t)erfc(h vt) S (18)
=l - (ﬂ 29 ]-l [1 - ex (th)erfc(k~[t)] ‘(19)
& T % T YNeoly y] ¢ P
_l :
_ . _ 2 ]
g = c + 1(t-0)[ F\-«/-DB] [l exp (X t)erfc()\oft) (20)
where

UY - : UB
= +
(n/y)‘ch-fDY ) (n/b)chffDB

(21)
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which, on substituting for U, and UB from Eq. 9, becomes

Y
. . n N n
\ = (ﬁ),l exp(1-p)JEn (ﬁ) 1oexp(-ﬁ;€n) (22)

+
vn b} vn o
Feg JDY FcBJDB
|

This equatlon and Eq. 18-20 reduce to the corrésponding equations for first-order
reactions (2, 4) when b=y=v=1,

Thus the approximate solution for charge-transfer reactions of higher
order has the same form as the exact solution for simple first-order reactions.(2,4) -
The major difference lies in the quantity N. According to Eq. 18 the larger the
value of A the more rapidly the relative current i/i( _~y decreases with time. The
evaluation of the quantities M and i,,_ ., from an t=0) experimental current-time
curve can be carried out using methoés previously developed for simple first-order
reactions.(2,4,9) The charge-transfer parameters i , B and V can then be found.
either from measurement of the anodic or cathodic Tafel line in the case of slow
reactions or from measurements of l(t-O) for varying activity of B or Y in the case
of faster reactions.

Validity of agpro;imate solutiont The approximate solution: given by Eq. 18-21 is,

valid only for small changes in concentration; its utility is chiefly determined by
the range over which it gives the true current to within an acceptable accuracy.
In order to test this we have developed exact numerical solutions using the Schmidt
method/{0). Some of these exact current-time curves for net anodic reactions are
presented in Fig. 1t curve I refers to a simple first-order reaction for which
b/v = y/V = n/v = 1; curve II refers to a reaction second pseudoorder in the anodic

. reactant Y with y/v =n/v = 2 and b/v = 13 curve III refers to a reaction third

pseudoorder in Y, with y/v = n/v = 3. The set of numerical data used here is the
same as in the 8rev1ous pager (4) 1 - 5 x 1073 a/cm? at 25°%C, B = 0.5, n= 0,0100V;
cY:105_and cg =5 x 107 mole/ c%3 —lOSandDB 2 x 1070 cn/s. Fig. 1
shows that, as the reaction pseudoorder in Y is 1ncreased the current falls more

rapidly with time.

The approximate and exact solutions for reactions of second pseudoorder
in Y are shown <in Fig. 2 for various values of the transfer coefficient B; except
for B the set of numerical data employed is the basic set used for Fig. 1. It is
seen that in every case the approximate solution for the current decreases more

~ rapidly with time than does the true current.

We have chosen to designate the range in i/i _~y over which Eq. 18 gives
satisfactory agreement with the true current by the posﬁf at which the approximate
solution deviates by 5¥ from the true current. These points are indicated by
vertical bars in Fig. 2; the approximate solution is acceptably accurate down to
(t=0) = 0,45, independent of the value of B. . As Oldham and Osteryoung (9) have

emphasized, the reaction k1net1cs are primarily diffusion controlled below 1/1(t=0) =
0.5. Thus, in this case, the approximate solution (eq. 18} is acceptably
accurate over the entire range in 1/1(t=0) from which information about the charge-

transfer parameters can be obtalned

. For a reaction third pseudoorder in the anodic reactant Y the approxlmate
and exact solutions are compared in Fig. 3. The numerical data are the basic set
used'for Fig. 1, with p = 0.5 and y = 3, The range in i/i(t=6) over
which acceptable agreement is found is shorter than that for the similar second
pseudoorder reaction: the point of 5% deviation occurs at 1/1(t=0) = 0,6.
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The. agreement to.be expected for somewhat slower reactions is shown in
Fig. 4. Here the basic cata set was varied by increasing the anodic overpotential
to y = 0.1 V and decreasing the exchange current density to i = 1079 A/cm2. The
limits of acceptable agreement are indicated by vertical bars® In this case the
point of 5% deviation occurs at i/i(tzo) =~ 0.6l and is again essentially indepen-
dent of the value of the transfer roefficient B.

-Thus far we have examined only net anodic reactions in whfch the higher
psaudoorder component was the anodic reactant (Y). In these cases, because of the
disparity of the exponential factors in Eq. 5, the current is predominantly con-
trolled by the higher pseudoorder component, this predominance becoming greater
the greater the overpotential. This is the reason for the poorer agreement shown
in Fig. 4 (n = 0.1V) than in Fig. 2 (1 = 0.01V).

The agreement between the approximate and exact numerical solutions im-
proves dramatically when the controlling reactant is the first order reactant (for
example, a net anodic reaction in which the higher pseudoorder component is the
cathodic reactant (B)). This is illustrated in the anodic current-time curves of
Fig. 5, for which the values of temperature, diffusivities and initial concentra-
tions are those of the basic data set. Curve 1I, for which the cathodic reactant
(B) is second pseudoorder while the anodic reactant (Y) is first order, shows no

measurable deviation between the approx1mate and exact solutions down to 1/1(t=0
O 2.

<
)

These examples suggest some general rules about the range of validity of
the approx1mate solution:

(1) The range of va11d1ty decreases when the pseudoorder of either com-
ponent 1s increased.

(2) The range of valldlty is extended greatly by ensuring that the
current is predominantly controlled by the component of lower pseudoorder. If, for
example, the higher order component is the cathodic component then a net anodic
reaction is desirable. :

(3) If rule (2) has been complied with there is an advantage in working
at the highest feasible overpotentials. If not, the advantage is obtained by
working at the lowest feasible overpotentials,

(4) The range of validity is insensitive to the value of the transfer
coefficient B.
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FIG.5-- ANODIC CURRENT-TIME CURVES FOR REACTIONS OF PSEUDOORDER TWO WITH. RESPECT TO
ANODIC REACTANT Y (CURVES I,TII) OR CATHODIC REACTANT B (CURVEIL). SOLID
CURVE -- EXACT NUMERICAL SOLUTION, DOTTED CURVE--SOLUTION OF LINEARIZED PROBLEM.
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FIG. 4--

EFFECT OF B ON ANODIC CURRENT-TIME CURVES FOR REACTION OF PSEUDOORDER TWO WITH
RESPECT TO ANODIC REACTANT Y. SOLID CURVES --EXACT NUMERICAL SOLUTION. DOTTED
CURVES -- SOLUTION OF LINEARIZED PROBLEM .
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FiG. 2--EFFECT OF 8 ON ANODIC CURRENT-TIME CURVES FOR REACTION OF
PSEUDOORDER TWO WITH RESPECT TO ANODIC REACTANT Y. 'SOLID
CURVES -- EXACT NUMERICAL SOLUTION. DOTTED CURVES-- SOLUTION
OF LINEARIZED PROBLEM.



